论文部分内容阅读
针对目前现有的PM2.5模式预报系统的预报值偏离实际浓度较大的问题,从上海市浦东气象局获得2015年2月至7月的PM2.5实况观测浓度、PM2.5模式预报(WRF-Chem)浓度和5个主要气象因子的模式预报数据资料,联合应用支持向量机(SVM)和粒子群优化(PSO)算法建立滚动预报模型,对PM2.5未来24小时浓度进行预报,同时对未来一天的昼、夜均值及日均值浓度进行预报,并与径向基函数神经网络(RBFNN)、多元线性回归法(MLR)、模式预报(WRF-Chem)作对比。实验结果表明,相比其他预报方法