一类多重联图的邻点可区别E-全染色

来源 :纯粹数学与应用数学 | 被引量 : 0次 | 上传用户:sishenzhichi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
设G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k].的映射.如果Au,v∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u))U{f(uv)|uv∈E(G)).称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别B全色数.本文给出了星、路、圈间的多重联图的邻点可区别E-全色数.
其他文献
在X^*可分的条件下,首先讨论了集值Pramart有关支撑函数和距离函数的性质,利用支撑函数和距离函数研究了集值Pramart鞅逼近,在此基础上,给出了集值Pramart的一类鞅分解.
林木采运管理是森林资源管理的重要组成部分和工作重点,立足于森林法及其实施条例,建立科学合理、贴近基层实际、因类施策、简便高效、管办分开的林区林木采运管理制度,以促