基于主成分分析和学习矢量化的神经网络岩性识别方法

来源 :测井技术 | 被引量 : 0次 | 上传用户:liongliong568
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
利用测井资料识别岩性的关键是建立非线性数学模型。针对测井曲线数量多和BP算法的局限,提出一种基于主成分分析(Principal Component Analysis,PCA)和学习矢量量化神经网络(Learning Vector Quantization,LVQ)的岩性识别方法。建立可靠的岩性与测井参数响应的对应关系,优选样本点和测井曲线组成样本集。通过主成分分析实现对测井数据的压缩、降维,依据分析结果建立基于LVQ神经网络的岩性识别模型。潘庄地区某井实际应用表明,经过PCA降维后,LVQ神经网络的收敛速
其他文献
气体的多方过程是热力学中具有重要应用价值的课题,天空和星球上的气团运动大都属于多方过程,多方过程是以多方指数而不是以热容量为基准定义的.