论文部分内容阅读
利用测井资料识别岩性的关键是建立非线性数学模型。针对测井曲线数量多和BP算法的局限,提出一种基于主成分分析(Principal Component Analysis,PCA)和学习矢量量化神经网络(Learning Vector Quantization,LVQ)的岩性识别方法。建立可靠的岩性与测井参数响应的对应关系,优选样本点和测井曲线组成样本集。通过主成分分析实现对测井数据的压缩、降维,依据分析结果建立基于LVQ神经网络的岩性识别模型。潘庄地区某井实际应用表明,经过PCA降维后,LVQ神经网络的收敛速