基于OSC的土壤全氮近红外光谱测定

来源 :森林工程 | 被引量 : 0次 | 上传用户:qy19871120wr
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采集农田、林地和盐碱地不同类型的土壤样本,采用偏最小二乘法结合OSC方法建立土壤有机质反演模型,运用交叉验证和外部验证相结合的评价方法进行比较分析。结果显示:采用平滑+MSC+OSC方法对光谱进行预处理,可以提高预测模型的精度。OSC因子个数和PLS主因子个数分别为6和4时,交叉验证决定系数R2为0.990 1,均方根误差为0.297 5,外部验证决定系数R2为0.926 1,均方根误差为0.283 6,模型达到最优。表明对光谱进行OSC预处理后建模是可行的,OSC降低与浓度阵无关的光谱信号,并且减少建立模型的主因子个数,进一步提高模型的精度和稳定性。 Soil samples collected from farmland, forestland and saline-alkali soil were collected. Partial least square method and OSC method were used to establish the soil organic matter retrieval model. The comparative analysis was made by cross-validation and external verification. The results show that using the smoothed + MSC + OSC method to preprocess the spectra can improve the accuracy of the prediction model. The number of OSC factors and the number of PLS ​​main factors were 6 and 4 respectively, the cross validation coefficient R2 was 0.990 1, the root mean square error was 0.297 5, the external validation coefficient R2 was 0.926 1, and the root mean square error was 0.283 6 , The model to achieve the best. The results show that it is feasible to model the spectrum by OSC pretreatment. OSC can reduce the spectral signal which has nothing to do with the concentration array, and reduce the number of the main factors to establish the model to further improve the accuracy and stability of the model.
其他文献
1940年5月28日,淮北泗县上空乌云密布。这天,一位鲜花般的少女,在日寇的屠刀下“凋谢”。她,就是抗日女英雄喻尊霞。    一腔热血——活跃在青年抗敌协会    喻尊霞,祖籍江西。1932年,喻尊霞年满12岁,就读于青阳镇小学。在学校里,她的学习成绩拔尖,老师和同学们都很喜欢她。不幸的是,她小学还未毕业,父亲就去世了。面对日益贫困的家庭,母亲不得不把她送到宿迁城里的姨娘家上学。1936年尊霞在宿
随着我国社会的不断进步和电力事业的飞速发展,我国的水电建设取得了突飞猛进的进步,随着我国对大中型水轮发电机组不断投资生产,导致水轮发动机的数量上去了,质量上不去,然而,水轮
本文以实际工程为例,对电厂烟气脱硫工程建筑种脱硫电气控制楼、石灰石筒仓、石灰石制备车间、储水间、石膏脱水间、吸收塔基础建筑施工方法进行了介绍,工程施工后取得了良好