多尺度PCA在传感器故障诊断中的应用研究

来源 :自动化学报 | 被引量 : 0次 | 上传用户:yhbx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A multiscale principal component analysis method is proposed for sensor fault detection and identification. After decomposition of sensor signal by wavelet transform, the coarse-scale coef-ficients from the sensors with strong correlation are employed to establish the principal component analysis model. A moving window is designed to monitor data from each sensor using the model.For the purpose of sensor fault detection and identification, the data in the window is decomposed with wavelet transform to acquire the coarse-scale coefficients firstly, and the square prediction error is used to detect the failure. Then the sensor validity index is introduced to identify faulty sensor,which provides a quantitative identifying index rather than qualitative contrast given by the approach with contribution. Finally, the applicability and effectiveness of the proposed method is illustrated by sensors of industrial boiler.
其他文献
随着十八大关于全面深化改革的决定的提出,国有企业混合所有制改革驶入了快车道。但是,军工企业由于其制度的特殊性,考虑到控制权和保密性问题,混合所有制改革一直大大落后于其他
学位
新疆和田地区位于新疆最南端、塔克拉玛干大沙漠边缘,其红柳大芸产业属于典型的沙产业。截至2010年底,其红柳大芸种植面积已接近30万亩,年均增长率达22.61%。红柳大芸产业有助于