论文部分内容阅读
提出一种新的基于高斯误差函数(Gaussian error function,Erf)作为激活函数的BP神经网络(Erf-BP),并用于林区TM影像进行混合像元分解。研究表明:Erf-BP模型的精度高于线性无约束最小二乘法模型及最大似然法。通过在高分辨率影像上选取验证样区精度检验得出:1)各端元总分解精度为89.2%,RMSE比线性无约束最小二乘法模型降低了近39%;2)该方法能够较高精度地提取森林遥感信息,精度达到86%,RMSE比线性无约束最小二乘法模型降低了近40.6%。将3种不同方法估计的整