Robust perfluorinated porous organic networks:Succinct synthetic strategy and application in chlorof

来源 :纳米研究(英文版) | 被引量 : 0次 | 上传用户:bobby980
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Fluorinated porous organic networks (F-PONs) have demonstrated unique properties and applications,but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free and easy handling conditions are still rarely reported.Herein,using polydivinylbenzene (PDVB) as an easily available precursor,a novel and straightforward approach was developed to afford F-PONs via a dehydrative Friedel-Crafts reaction using perfluorinated benzylic alcohols as the cross-linking agent promoted by Brφnsted acid (trifluoromethanesulfonic acid).The afforded material (F-PDVB) featured high fluorine content(22 at.%),large surface area (771 m2·g-1),and good chemical/thermal stability,rendering them as promising candidates for the adsorption of CO2,hydrocarbons,fluorocarbons,and chlorofluorocarbons,with weight capacities up to 520 wt.% being achieved.This simple methodology can be extended to fabricate fluorinated hyper-crosslinked polymers (F-HCPs) from rigid aromatic monomers.The progress made in this work will open new opportunities to further expand the involvement of fluorinated materials in large scale applications.
其他文献
Conventional bioelectrical sensors and systems integrate multiple power harvesting,signal amplification and data transmission components for wireless biological signal detection.This paper reports the real-time biophysical and biochemical activities can b
Compressible sensors with highly porous features are ideal candidates for sports and wearable electronics.This study demonstrated for the first time,how the crystalline transformation of poly (vinylidene fluoride) (PVDF) influences aerogel formation and a
Confronted by the inherent physical limitations in scaling down Si technology,transition metal dichalcogenides (TMDCs) as alternatives are being tremendously researched and paid attention to.However,mature counter doping technology for TMDCs is still elus
Electroreduction of carbon dioxide (CO2ER) into value-added chemical compounds has presented as a promising route for renewable carbon cycle,which alleviates global warming concern.Compared with traditional C1 products,high-value multicarbon products conv
Rational design of earth-abundant transition metal oxides catalysts is highly desirable for developing sustainable chemical processes.Herein,we demonstrate a prospective interstitial nitrogen engineering for fabricating oxygen vacancies (OVs)-rich nitroge
Here,we report a strategy to deliver drug nanoparticles into cells with nucleus-targeting ability under a spatiotemporal control.The nanoparticles were constructed through self-assembly of photoresponsive prodrugs and free drugs.By incorporating a nucleus
Developing carbon-based electrocatalysts with excellent N2 adsorption and activation capability holds the key to achieve highly efficient nitrogen reduction reaction (NRR) for reaching its practical application.Here,we report a highly active electrocataly
Wearable biopotential sensing devices are essential to long-term and real-time monitoring of human health.Non-contact,capacitive sensing electrodes prevent potential skin irritations,and are thus beneficial for long-term monitoring.Existing capacitive ele
Spirothiopyran (STP) is particularly attractive when used as a mechanophore to endow polymers with both damage-signaling and self-reinforcing capacity.It is,however,not clear the actual force required to induce the cycloreversion of STP into ring-opened t
Design of metal-free photocatalysts with customized chemical structure and nano-architecture is promising for photocatalytic hydrogen peroxide (H2O2) production.Herein,for the first time,mesoporous resorcinol-formaldehyde (MRF) nanobowls with optimized be