论文部分内容阅读
为进行快速动态层次聚类,通过分析自适应谐振理论(adaptive resonance theory,ART)神经网络的快速学习、主观设置警戒参数、输出无层次结构等优缺点以及自组织特征映射(self-organizing feature map,SOFM)神经网络的侧反馈、不能动态聚类、输出无层次结构等优缺点的基础上.借鉴Hebb规则的思想,针对ART2神经网络的聚类算法进行了改进研究。通过结构描述、算法分析,该算法融合了ART2和SOFM的优点,克服其不足之处,以快速学习的方式形成可带有多层层次的动态聚类