论文部分内容阅读
从数学编码的角度探讨0的数学的、逻辑的和哲理的内涵,或者,是从数学编码的角度对空缺现象的一种认知,并把这样一种认知看作现象学的内容之一。所以,对空缺的认知及其数学编码也可视为认知现象学范畴之内的。文章重点论述空缺的数学表示,围绕空缺的数学编码讨论了一些相关的问题:如何表示空缺?八卦的逻辑内涵是什么?布尔代数的运算是封闭的吗?极端存在的状态是什么样的?空位如何表示?存在0内代数吗?布尔代数与广义太极代数(含太极代数)的差别是什么?
To explore mathematical, logical, and philosophical connotations of mathematics from the perspective of mathematical coding, or to recognize a vacancy from the perspective of mathematical coding and to regard such a perception as one of the elements of phenomenology . Therefore, the knowledge of vacancies and their mathematical coding can also be considered within the scope of cognitive phenomenology. The article focuses on mathematical representations of vacancies, discusses some related issues around mathematical coding of vacancies: how to represent vacancies? What is the logical connotation of gossip? Is the operation of Boolean algebra closed? What is the state of extremism? How to express? There is 0 within the algebra? Boolean algebra and generalized Tai Chi algebra (including Tai Chi algebra) What is the difference?