共同配送中的费用分摊研究

来源 :中国市场 | 被引量 : 0次 | 上传用户:vancentfcf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:共同配送已经成为现代物流配送发展的趋势之一,并为广大国家广泛接受与应用。共同配送具有很大的优势,但同时这种模式也存在一定的问题。本文在肯定共同配送重要地位的基础上,运用合作对策和夏普利求值的方法对共同配送中的费用分摊进行了研究。
  关键词:共同配送;费用分摊;夏普利值法
  中图分类号:F715 文献标识码:A
  
  在现代物流发展过程中,共同配送是物流配送技术创新的重要成果,成为企业物流配送的重要方式。西方发达国家高度重视共同配送活动,不断拓展和深化共同配送的理论研究和实践活动,形成一套完整的共同配送发展体系。我国正处于传统物流向现代物流转型的阶段,国外的共同配送观念与国内实际结合还有距离[1]。特别是随着企业规模逐渐扩大,商品流通量增加,市场竞争日益激烈,我国企业亟需强化规范化管理,积极发展共同配送,优化物流配送资源,降低物流成本,使自己在竞争中立于不败之地。
  
  一、选择共同配送模式原因分析
  
  共同配送是将众多流通单位处理同种或异种商品的配送功能整合起来,促使他们共同利用仓库、车辆等设施设备,有效整合物流配送资源,将小批量货物转换成商品集运,形成大批量配送,实现低成本高水平的物流服务[2]。对于企业来说,选择共同配送具有很大的优势。
  
  1.可以减少投资风险
  各行各业为保证生产供应或销售效率和效益,各自都想设立自己的配送中心以确保物流系统的高效运作,但由于市场变幻莫测,难以准确把握生产、供应或销售的物流量,若规模建大了,则配送业务不足;若规模建小了,则配送业务无法独立完成,达不到应有的目标。既然自己设立配送中心规模难以确定,风险系数大,还不如利用社会化的配送中心或其他企业合建开展共同配送更为可靠。
  
  2.可以更好的优化资源配置
  在市场经济时代,每个企业都要开辟自己的市场和供销渠道,因此,不可避免地要分别建立自己的供销网络体系和自己的物流设施,这样一来,便容易出现在用户较多的地区设施不足,在用户稀少地区,设施过剩,造成物流设施的浪费,或不同配送企业重复建设配送设施的状况。因此从资源优化角度考虑,共同配送是一种更为可行的办法。
  
  3.减少交通问题和环境污染问题
  近些年出现的“消费个性化”趋势和强调“用户是上帝”,越来越要求采取准时送达的配送方式,因此,送货或用户车辆的提运货额度很高,这就引发了交通拥挤、环境噪音及车辆废弃污染等一系列社会问题。采取共同配送方式,可以以共同配送使用的一辆车,代替原来的几辆车或几十辆车,自然有利于缓解交通拥挤、减少污染。因此,共同配送是解决这严重的交通问题和环境问题的有效方式之一。
  
  4.减少企业物流成本,增加利润
  企业配送的目的就是追求企业利润最大化,共同配送通过严密的计划安排,提高车辆使用效率,提高设施使用效率以减少成本支出,增加利润,是企业追求利润最大化的有效途径。因此,企业逐渐意识到了共同合作配送的重要性,大力开展社会化横向共同配送。共同配送是企业在以上的社会经济背景下,为适应生存发展需要而形成的一种重要配送模式。
  
  二、共同配送的费用分摊
  
  共同配送是我国企业物流配送的最优选择,但是使用这种物流配送模式也容易出现一些难题,最主要的就是共同配送主体之间费用分摊的问题。
  本文研究的共同配送,从构成模式与组织形式上看,参与者之间的合作关系建立在共同追求成本节约和利润增加的目标之上,彼此之间通过协议、承诺、行业规范等进行约束,可以在充分的信息交换情况下开展配送业务,符合合作对策的基本概念,因此可以用合作对策理论解决共同配送相关问题。
  
  1.合作对策概念的数学分析
  合作对策概念的数学表达可以从两个基本要素入手,分别定义如下:
  (1)联盟
  设N=﹛1,2,…,n}为局中人集合,其中有S为任意一个非空子集,即 S N,S Φ,则称S为N的一个联盟。从这样的意义上讲,可以把单个局中人看作是一个特殊的联盟,那么非合作对策又成为合作对策的一种特殊形式。
   (2)分配
  合作对策的分配是指对n个局中人来说,存在一个n维向量X=(x1,x2,...,xn) 满足:
  <1> =V(N)<2> xi≥V({i})
  其中V(N)表示各种联盟形式中最大的收益,V({i})为第i个局中人未参加联盟时单独决策的收益。条件<1>说明各人分配的收益之和恰好是联盟收益,条件<2>说明从联盟中各人分配到的收益不小于单独经营所得收益。即分配必须是帕累托改进的[3]。
  
  2.合作对策的求解
  我们希望在全体分配集X中找出一些分配,这些分配能够被参加到各个联盟S中的各个局中人所接受。如果存在唯一的一个分配x∈X,它能够让每个局中人i都感到满意,则这个分配就可以作为所考虑的合作博弈的解,利用夏普利值公式求解是一个可行的方法。
  夏普利值法是建立在这样的一个合作对策上:存在有限局中人集合N与一个定义在N的子集上的函数V(S),S N,记为G=(N,V)。V(•)是特征函数,这与特征函数型博弈中定义的特征函数完全相同。V(S)的实际意义是联盟S所能创造的财富或收益,表示S中成员的最大总和赢得。
  (1)模型假设[3]
  <1>局中人是有限个,即N为有限集。
  <2>局中人之间的协议是在一定约束力下强制执行的,即保证对策为合作对策。
  <3>可交换性和可加性,即存在一种交换媒介(如货币),可在局中人之间自由地、无限量地转移,从而使每个局中人的效用是可加的。而且一个成员减少了x单位的效用,联盟中的另一成员将会增加x单位的效用。当用特征函数来研究n人合作博弈(N,V)时,实际上已经假定了各局中人都用相同的效用尺度来衡量他们的收益。
  <4>特征函数是完备的,即对任意给出的S,S N,V(S)都被完整地定义或描述,不存在没有效用函数值的联盟。
  (2)夏普利值及概率解释
  对于任意的n人合作对策(N,V),存在惟一一个向量函数φ= (φ1, φ2, …φn)满足以上公理,它的第i个分量为:
  
  这个分量值称为夏普利值。其中S表示联盟S中所含局中人的个数。
  
  3. 实例分析
  假设有三个企业,他们要配送产品为1、2、3,他们存在不同的配送方式,产生的物流费用也各不相同。
  在这个例子中,将3个企业看作是局中人,局中人的集合为N=[1,2,3],S=({1},{2},{3},{1,2},{1,3},{2,3},{1,2,3})代表三者可能的所有结盟方式。
  当3个局中人各自独立时,它们应承但的物流费用,即各自的特征函数值为:
  c({1})=8万元,c({2})=10万元,c({3})=6万元。
  当两两结盟时,由于固定费用的存在,使得结盟后的费用比单独两方费用之和低,联方的特征函数值为:
  c({1,2})=17万元,c({1,3})=12万元,c({2,3})=15万元。
  当三者结成大联盟时,总的特征函数值为:c({1,2,3})=20万元
  根据夏普利值公式,三者结成大联盟时,它们各自分配的费用为x1,x2,x3:
  通过计算得出:x1=6.5万元;x2=9万元;x3=4.5万元
  每个局中人实行共同配送后分摊的费用少于它独自配送的费用,这说明这种分配方法具有有效性,即它将大联盟的总费用完全在所有局中人之间进行了分配。
  
  三、结束语
  
  共同配送是经长期发展和探索优化出的一种追求合理化的配送形式,其内涵在于资源共享理念下建立企业联盟。共同配送理念的实现,对企业和整个社会都有好处,但是实行共同配送是企业战略层面上的问题,对技术性及战略细节要求都比较高,因而在发展和实行上有相当的难度。本文通过分析共同配送带来的好处,说明了企业实行共同配送的必要性,同时特别针对共同配送中的费用分摊问题进行了研究。总的来说,共同配送模式可以实现资源的优化配置,减轻环境污染,兼顾了企业经济效益和社会效益,顺应了我们国家的发展需要,是我国现代物流配送的发展趋势。
  作者单位:中南林业科技大学商学院
  
  参考文献:
  [1]冯霞.我国物流配送的现状分析及前景展望[J].现代物流,2003,(6):30-32.
  [2]郑妍.适合我国的配送模式[J].中国市场,2003,(6):60.
  [3]叶飞等.虚拟企业成员之间利益分配方法研究[J].统计与决策,2000,(7):11-12.
其他文献
从气候变化到经济复苏,世界所面临的许多问题都需要中美两国团结协作应对,跨太平洋关系将决定美国及世界其他国家的未来。    “美国的未来更多是由我们对太平洋彼岸的中国的立场而非对大西洋彼岸欧洲的立场决定。”美国前总统西奥多·罗斯福在预测亚洲抓住其巨大的贸易机遇之时如此说。  罗斯福作此预测一百多年后,美国领导人再次认为,跨太平洋关系将决定美国及世界其他国家的未来。虽然比罗斯福预测的迟了点,但中国已变
虚拟企业是指两个或多个拥有核心能力的物流企业或项目组,依托信息网络资源,以业务包干形式独立完成策略联盟的某一子任务块,通过共享彼此的核心能力,使共同利益目标得以实现的统
[摘要]随着形势的变化、体制的转换、权力和各种利益格局的调整、市场经济的不断深入以及中心工作的转移,对党建工作也同样提出了新的要求,所以在这种情况下,党建工作如何适应新形势、探索新路子并在提高党建工作的质量和水平上有所突破成为党建工作的重中之重。  [关键词]科学发展观;创新;党建工作  [中图分类号]D251  [文献标识码]A  [文章编号]1005-6432(2009)52-0074-02 
作为一名班主任,我始终坚信,师爱是教育学生最起码的基础条件,又是一股强有力的教育力量,它可以通向学生心灵深处,创设优化的教育环境和心理环境.所以,我的班主任工作都是从
期刊
介绍了代用碱HS-310F2的两种染色工艺方法即全量法和分次投入法,对比并分析了代用碱和纯碱工艺染色中的pH值,以及染色后的色光和牢度,并测定出染色残液的COD值,举例比较了其