论文部分内容阅读
为了提高空气质量预测精度,提出一种基于粒子群算法优化极限学习机的空气质量预测模型.运用粒子群算法优化极限学习机的初始权值和偏置,在保证预测误差最小的情况下实现空气质量最优预测.选择平均绝对百分比误差、均方根误差和平均绝对误差作为评价指标,通过PSO-ELM、GA-ELM、SOA-ELM、DE-ELM和ELM五个模型预测结果对比发现,PSO-ELM可以有效提高空气质量预报的预测精度,可为空气质量预测提供新的方法和途径.