【摘 要】
:
本文利用粘滞逼近法建立了一迭代序列来逼近两个集合的公共元素,这两个集合分别是Banach空间中广义变分不等式组的解集与Banach空间中有限个严格伪压缩映射的公共不动点集.本
论文部分内容阅读
本文利用粘滞逼近法建立了一迭代序列来逼近两个集合的公共元素,这两个集合分别是Banach空间中广义变分不等式组的解集与Banach空间中有限个严格伪压缩映射的公共不动点集.本文证明了该迭代序列强收敛到这两个集合的某一公共元素,且该元素为某一变分不等式的解.本文的结果提高与推广了许多相关结论.
其他文献
研究了一类具有扩散和交叉扩散项的Holling-Tanner捕食-食饵模型.首先利用最大值原理和Harnack不等式给出正解的先验估计,进一步利用度理论得到非常数正解的存在性与不存在性
构造了有重复观测的变系数EV模型中的诸多参数估计,包括系数函数、测量误差方差以及测量误差与回归误差的协方差等估计,去除了有关测量误差方差已知或可靠比已知的假定.在一
利用凝聚映射的不动点定理,对脉冲函数不加紧性条件和其他额外条件,通过逐段延拓的方法,获得了无穷区间上脉冲微分方程初值问题解的存在性,本质上改进了某些已知的结果.
本文给出了各向异性板半无限裂纹平面问题的保角变换解.首先,简单介绍了各向异性板平面问题的基本理论.随后采用复变函数的方法,通过引用适当的保角映射研究了各向异性板半无
对Cn中的单位球Bn上的Dirichlet类Dp,得到与Hardy空间Hp的包含关系,并获得其精确的多项式逼近阶和以Hardy空间度量的Fejér算子逼近的一个上界估计.
本文对于起源于神经科学的一类轴突输运方程研究了行波解的性质,从数学上解析了神经信号是如何通过行波解传递的.
全染色是对图G的顶点和边同时进行正常染色,至少要用Δ+1个色才能对图G进行正常全染色.本文运用权转移的方法,证明了最大度为8的不含特定子图的简单平面图是9-全可染的.
本文讨论了如下非线性斯图谟-刘维尔方程的第一边值问题{p(x)u"(x)+f(u(x))=0,0
C(m,2)表示由圈Cm(v1v2…vmv1)增加边vivi+2(i=1,…,m,i+2 (mod m))所得的循环图.C(m,2)的一点悬挂(两点悬挂)是增加一个顶点x(两个顶点x,y)和边xv(边xv,yv)的图,其中v∈V(C(