论文部分内容阅读
随着网络的迅速普及,网络应用多样化趋势加快,大数据时代已经到来,电商业对于在线推荐系统的要求也越来越高。为了满足人们的需求,传统的推荐算法必须得到改进和发展。本文主要考虑数据比较稀疏及数据规模较大的情况下如何更好地实现协同过滤推荐算法,针对这两个方面的不足,结合Hadoop平台的优势,基于双维度云模型的协同过滤推荐算法由此应运而生了。通过实验,利用云模型和双维度数据,有关数据稀疏性问题得到了合理的解决,预测准确率方面也得到了一定的改进。并且通过MapReduce处理流程,使大数据环境下运行困难效率低下的缺