一种新的多尺度边缘跟踪算法及其应用

来源 :计算机应用研究 | 被引量 : 6次 | 上传用户:bloodt
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对多尺度边缘检测中如何有效地将不同尺度上的边缘信息相融合问题,提出了一种新的多尺度边缘跟踪算法。该方法首先获得输入图像的多尺度边缘图像和多尺度梯度方向图,然后根据相邻尺度间对应边缘点的相似特征,进行由大尺度到小尺度的逐层边缘跟踪,将不同尺度上的边缘信息融合,最后通过对获得的跟踪边缘图像的细化处理得到最终边缘图像。实验结果表明,该融合算法具有边缘检测完整、定位准确、伪边缘点少等优点,并且具有较高的运行效率。
其他文献
针对Grab Cut基于像素建立图模型并进行迭代求解耗时的特点,提出了一种新的基于SLICO改进的Grab Cut分割新算法。首先用户在图像目标区域手动划定一个矩形框,然后在CIELab颜色模型下利用SLICO算法将图像预处理成内部颜色一致的超像素图,利用这些超像素来构建图模型,并用这些超像素均值迭代估计高斯混合模型(GMM)参数。在参数估计中,采用背景区域优化技术,显著减少迭代时的节点数量,并减
目的:探究慢性乙肝病毒感染型专科医院与社区卫生服务中心实行双向性转诊模式的相关情况。方法:选择构建双向转诊服务模式以来的社区慢性乙肝炎症病毒性感染患者587例,并选取
针对传统窗宽固定不变的Mean-Shift跟踪算法不能实时地适应目标尺寸大小变化这一问题,提出了一种基于目标相似度辅助决策的带宽自适应跟踪算法。首先利用目标与背景的特征显著性,提高跟踪算法空间定位准确性;然后利用局部穷搜索的方法,计算目标模型与每一帧目标跟踪中心点附近一定区域的相似性;最后通过统计分析前后帧相似像素点数目变化,确定目标尺度变化情况,从而建立一种自适应更新带宽准则,提高算法对目标尺度