论文部分内容阅读
对不平衡数据集SVM分类存在着分类结果偏向多数类的情况,使得分类结果中少数类的F1-Measure值偏低.本文提出一种不改变样本集合的样本数,并结合样本点总数,分类过程中的支持向量个数,少数类和多数类的准确率,生成权重值对分类超平面参数b进行优化,以此提高少数类样本点分类准确率的方法,并通过实验证明该方法的有效性.