论文部分内容阅读
在视觉定位系统中,由于各种噪声的影响,运动目标的三维位置和姿态的计算精度受到一定限制。为了提高运动物体的定位跟踪精度,提出了一种有效的滤波算法。和已有的方法相比,这种算法具有以下两个特点:第一,不再局限于平缓运动的物体,它对于未知运动规律的机动目标同样有效,第二,由于避免了扩展卡尔曼滤波器的使用,滤波复杂度有所下降。通过分析噪声对位姿计算误差的影响,建立了一组描述位姿测量值和真实值关系的线性测量方程。然后,分别给出了两种滤波算法:基于有限记忆的检测自适应滤波和基于数值微分模型的卡尔曼滤波。在检测自适应滤波