论文部分内容阅读
机器人在未知环境中探索时不仅存在传感器误差,而且经常受到外部干扰的影响。传统EKF-SLAM算法没有考虑外部干扰,会导致机器人定位的失败,为此,提出一种改进的EKF-SLAM算法。采用极坐标对比前后2次观测结果来检测是否存在外部干扰。当检测到存在外部干扰时,通过膨胀系统状态的方差扩大其不确定性,使系统状态迅速收敛到真值。仿真结果表明,该算法在移动机器人SLAM的估计精度和鲁棒性两方面均优于传统的EKF-SLAM算法。