Fe3O4@Angelica sinensis polysaccharide nanoparticles as an ultralow-toxicity contrast agent for magn

来源 :稀有金属(英文版) | 被引量 : 0次 | 上传用户:zhenghaiwei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Although iron oxide(Fe3O4)nanoparticles have broad application prospects as magnetic resonance imaging(MRI)contrast agent,their biocompatibility and biotoxicity still need to be improved.In this study,we prepared Fe3O4@Angelica sinensis polysaccharide nanoparticles(Fe3O4@ASP NPs)with a 9 nm Fe3O4 core and ASP as the coating material.The Fe3O4@ASP NPs are superparamag-netic,can be taken up by liver and spleen macrophages in the circulatory system in vivo,and are a good-biocompatibility and low-toxicity transverse relaxation time(T2)and T2-star(T2*)magnetic resonance imaging(MRI)contrast agent for the liver.The cytotoxicity assessment using HeLa cells and the pathological tests in mice validate that Fe3O4@ASP NPs have low toxicity and good biocompatibility in vivo,which can be attributed to the ASP as a natural polysaccharide with good biocompatibility and its function of protecting the liver.Fe3O4@ASP NPs are a potential new MRI contrast agent with high signal intensity in vivo.
其他文献
In the family of anodes for sodium-ion batteries,alloy-type anodes possess higher theoretical specific capacity than carbon anodes.The theoretical specific capacity of metallic Sn is 847 mAh·g-1.However,the tin-based material undergoes a large volume expa
SnSe crystals have been discovered as one of the most efficient thermoelectric materials due to their remarkable thermal and electrical transports.But the polycrystalline SnSe possesses much lower performance especially for the low carrier mobility and el
Nitrogen-doped Zn-Ni oxide nanoparticles prepared by ammonia treatment are efficient electrocata-lysts for CO2 reduction to CO.The single-phase nanos-tructures of N-Zn-Ni oxide nanoparticles exhibited high electrocatalytic CO2 reduction activity with CO F
Graphite anode materials are widely used in commercial lithium-ion batteries;however,the long elec-tron/ion transportation path restricted its high energy stor-age.In this experiment,we designed a copper/graphite composite with a dual three-dimensional(3D
TiO2-based materials have been considered as one of most promising alternatives for high-performance Li(Na)-ion batteries because of the low cost,simple com-position,easy synthesis,good environmental protection,excellent safety and relatively high specifi
Biomedical metallic materials are commonly used in the repair and replacement of human tissues.After the materials are implanted in the human body,the implants can rub against human tissue or other implants,resulting in wear and tear of the implants.The w
Manganese oxides(MnOx)have been exten-sively investigated due to their extremely high theoretical capacities for application as conversion anodes in lithium-ion batteries.However,fully performing their theoretical performance still faces poor electric con
Recently,researchers have focused on design-ing and fabricating highly efficient catalysts for photocat-alytic organic pollutant removal.Herein,CeO2 hollow spheres were prepared through a simple template method followed by calcination at different tempera
In this paper,a series of Sb-doped and Bi-doped Cu2Sn1-xMxSe3 samples(M = Sb,Bi)are prepared by vacuum melting combined with the spark plasma sintering process.The effects of different atomic doping amounts on their properties are discussed.Structural stu
Hot corrosion behavior of Sm2(Co,Fe,Cu,Zr)17-type high-temperature magnetic alloy without and with a protective coating of Ni and Ni/Cr bilayer at 500℃ in a corrosive mixture of 75 wt%Na2SO4-NaCl for 100 h was reported in this paper.The obtained results o