论文部分内容阅读
针对滚动轴承早期故障振动信号信噪比低、单一故障特征难以实现在整个复杂非线性状态空间上准确分类的局限,提出了基于本征时间尺度分解(intrinsictime-scaledecomposition,简称ITD)和分形模糊熵的轴承早期故障智能诊断方法。首先,利用改进的ITD方法将包含大量背景噪声的非线性非平稳振动信号自适应地分解为不同频段的合理旋转(properrotation,简称PR)分量;然后,提取蕴含故障信息的PR分量的分形维数和模糊熵,组成联合特征向量;最后,采用适合小样本模式识别的最小二乘支持矢量机