论文部分内容阅读
本文提出了一种基于改进Wasserstein生成式对抗网络(De-aliasing Wasserstein Generative Adversarial Network with Gradient Penalty,DAWGAN-GP)的磁共振图像重构算法,该方法利用Wasserstein生成式对抗网络代替传统的生成式对抗网络,并结合梯度惩罚的方法提高训练速度,解决WGAN收敛缓慢问题.此外,为了有更好的重构效果,我们将感知损失,像素损失和频域损失引入至损失函数中进行网络训练.实验结果表明,对比现有的