时效处理后铝合金焊接接头组织和性能的变化

来源 :稀有金属材料与工程 | 被引量 : 0次 | 上传用户:aaitata
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
主要研究时效处理温度和时效保温时间对7075铝合金激光焊接头组织和性能的变化规律,使用扫描电镜观察焊接过程中形成的链条状的T相随着保温时间的延长,逐渐熔断进入基体,时效处理温度120℃保温24 h后T相呈均匀分布的球状,减少了其对基体的割裂作用.通过TEM和SAED花样可以看出[011]Al、[112]Al、[001]Al晶带轴均析出纳米级强化相η\'相,阻碍位错运动,提高焊缝的力学性能,随着时间的延长η\'相尺寸、分布密度发生变化,逐渐变成η相.通过对比显微硬度和抗拉强度,时效处理温度120℃保温24 h时7075铝合金激光焊接头的力学性能最好.
其他文献
采用电弧熔炼制备了AlCrCuFeNbxNiTi(x=0,0.25,0.5,1.0)高熵合金,研究不同Nb含量对AlCrCuFeNbxNiTi高熵合金显微组织和力学性能的影响.结果 表明:AlCrCuFeNbxNiTi(x=0,0.25,0.5,1.0)高熵合金物相主要包含有序fcc的L21相和Laves相,还有少量的bcc(A2)和fcc相;Nb元素的添加能促进Laves相的生成且对Cu元素的偏析具有一定的抑制效果;通过相判据参数计算找到了适合AlCrCuFeNbxNiTi高熵合金的相形成判据;添加适量
研究了激光熔化沉积CoCrMoW涂层的微观组织与发射光谱的关系,及不同激光功率的光谱信号与CoCrMoW涂层一次枝晶间距、显微硬度的关系.提出了一种新的光谱信号指数积分面积,由4条离散CrI谱线计算出电子温度.结果 表明,当激光功率从400W增加到1000W,平均一次枝晶间距由3.426μm增加到7.420μm,显微硬度HV0.2由3461MPa降低到3095MPa.光谱的积分面积和电子温度随激光功率的增大而增大.涂层的一次枝晶间距与光谱信号呈正相关,而涂层的显微硬度与光谱信号呈负线性相关.与电子温度相比
在当前薄膜制备技术中,电弧离子镀因靶材表面发生电弧放电局部熔融,导致沉积粒子中夹杂微米尺度高温颗粒,引发薄膜表面粗糙和基体高温损伤;直流磁控溅射因辉光放电产生的等离子体碰撞溅射靶材表面,导致溅射出的粒子离化率低,引起薄膜厚度不均和组织疏松.为解决以上问题,依据气体放电等离子体物理学知识,采用新型阶梯式双级脉冲电场诱发阴极靶材与阳极腔体间气体微弧放电,依靠微弧放电后产生的高密度等离子体,增强Ar+对靶面的轰击动能和靶面产生的焦耳热,实现将粒子的获得方式由碰撞溅射转变为热发射方式,以此提高粒子的离化率,达到改
玉米秸穰(CSC)是一种低成本、可持续的生物质资源,由于天然的多孔结构,可用作过滤材料.利用简易的化学沉淀法在秸穰上负载ZnO纳米粒子(ZnO NPs),用于水体的净化杀菌.不同锌源对ZnO NPs的生长形态和化学特性有显著影响,从而产生多种抗菌活性.以乙酸锌为锌源制备的复合滤柱显示出较优异的抗菌效果,在过滤5 min后对大肠杆菌和金黄色葡萄球菌的抗菌率分别达到了94.5%和90.5%.分析其抗菌机理推测为CSC的分级多孔结构对细菌有一定的截留作用,继而使细菌与纳米粒子发生物理摩擦以及与活性氧(ROS)和
采用水热法制备纯ZnO、Cu-ZnO、S-ZnO及(Cu,S)-ZnO纳米粒.通过X射线衍射(XRD)仪和扫描电子显微镜(SEM)对其晶型结构和表面形貌进行表征分析.利用电化学工作站测定其电化学性能.此外,以亚甲基兰溶液模拟废水,研究其光电催化性能.结果 表明,掺杂剂的加入并没有改变其晶体结构,但晶粒尺寸明显变小,表面积增大,表面分布较为均匀.掺杂后,电极的电催化活性明显提高.其中,(Cu,S)-ZnO纳米粒的电化学性能最好,对亚甲基兰溶液的降解率最高,可达87.69%.
以无纬布/网胎0°/90°叠层穿刺三维四向预制体为增强体,采用化学气相渗透(chemical vapor infiltration,CVI)、树脂浸渍碳化(polymer infiltration carbonization,PIC)与反应熔渗(reactive melt infiltration,RMI)复合工艺制备穿刺C/C-SiC复合材料,研究其微观组织及在C2H2-O2焰中的烧蚀行为.结果 表明:无纬布、穿刺纤维束由CVI+PIC制备的碳基体填充而形成致密C/C区域,RMI生成的SiC主要位于网胎
利用冷喷涂辅助原位合成高熵合金涂层的方法,在45#钢基体表面制备出不同Co含量的FeCoxCrAlCu(x=0,0.5,1,1.5,2)高熵合金涂层.通过XRD、SEM、EDS、TEM、显微硬度计、磨料磨损试验机、电化学工作站等设备,检测分析了Co含量的变化对合金涂层相结构、显微组织、硬度、耐磨性及耐腐蚀性的影响.结果 表明:合金涂层是由简单的fcc+bcc双相混合结构组成,Co含量的改变对涂层相结构的影响不大;随着Co含量的增加,合金涂层中的枝晶数目增加,并且得到明显粗化,枝晶内富集Fe、Cr、Co元素
利用放电等离子烧结(SPS)技术制备了中间致密、表面多孔的Yi-13Nb-13Zr梯度合金,研究了烧结温度(950~1200℃)对梯度合金组织演变、界面结合、表面孔隙特征、力学及体外矿化性能的影响.结果 表明:随烧结温度的逐步上升,梯度合金中a-Ti相减少,β-Ti相增多,组织逐渐连续均匀分布,晶粒得到细化,中间基体与多孔层界面呈连续过渡且形成良好的冶金结合,表面多孔层孔隙率下降而平均孔径减小;梯度合金抗压强度值随烧结温度升高呈先增大后减小趋势,而弹性模量值变化不大;综合分析,烧结温度为1150℃时,制备
使用OM、SEM和TEM等方法研究了质量分数0%,0.21%,0.46% Nb对固溶态和时效态15Cr-15Ni含Ti奥氏体不锈钢(15-15Ti)中析出相类型、形貌及其分布的影响.结果 表明,Nb取代了(Ti,Mo)C相中部分Ti、Mo原子,在0.21%Nb和0.46%Nb合金中形成富Nb的(Nb,Ti)C相,而且Nb含量的增加使固溶态的奥氏体基体组织细化.在850℃时效1000 h后,组织中有Sigma相、MC碳化物析出,Nb的增加促进了Nb、Mo元素在Sigma相中的富集,促使Sigma相更为细小、
超级电容器具有比电容高、循环寿命长和绿色无污染的特点,其优异的电化学性能备受关注.本实验水热合成了NiMoO4/g-C3N4复合粉体,并将粉体涂覆在泡沫镍上制备了NiMoO4/g-C3N4电极材料.结果 表明,NiMoO4/g-C3N4粉体形貌主要为NiMoO4纳米棒和团状g-C3N4,且NiMoO4纳米棒生长在g-CaN4纳米片上.在NiMoO4中加入30at%的g-C3N4能降低电容体系的等效串联电阻和扩散阻抗,有利于氧化还原反应的进行.相比于其他g-C3N4含量的电极材料,g-C3N4含量为30at