论文部分内容阅读
将近红外光谱技术与深度学习理论相结合,提出了一种基于Dropout深度信念网络(DBN)的棉涤混纺面料中各组分含量的快速检测方法。首先使用小波变换对原始光谱数据进行压缩处理,再构建以高斯受限玻尔兹曼机(GRBM)为核心的DBN模型,以保证输入数据信息的完整性;然后利用Dropout来防止模型过拟合,通过隐藏部分隐含层节点来减小节点之间的相互依赖,实现网络的稀疏化处理,提高了非线性建模和网络模型的泛化能力。实验结果表明:对于采用Dropout-DBN方法建立的棉涤混纺面料中各组分含量的分析模型,其棉、涤纶含量的预测集相关系数分别为0.9927和0.9903,预测集均方根误差分别为0.0792和0.0869。与其他建模方法相比,所建模型的精度和适应性显著提高,并有利于模型的传递与共享,提高了模型的智能化。