论文部分内容阅读
为了解决由情感变化引起的说话人识别性能下降问题,提出了一种新的情感说话人识别系统.首先,通过引入情感识别作为前端处理模块,对中性语音和情感语音进行分类.然后,对情感语音进行韵律修正,分别采用高斯归一化、高斯混合模型(GMM)和支持向量回归(SVR)等方法建立情感语音和中性语音的基频映射规则,并根据平均线性变化率对时长进行了修正.最后,对韵律修正后的情感语音进行识别.实验结果表明,提出的情感说话人识别系统可以有效地提高情感说话人识别的性能,识别率相比传统方法有了显著的提高.并且通过基频和时长修正的情感语音更