论文部分内容阅读
微生物发酵过程中一些关键生物参数难以实时在线测量,严重影响发酵的优化控制。为解决关键生物参数的测量难题,采用了一种基于PSO-SVM的软测量方法。该方法利用粒子群优化(PSO)算法优化选择支持向量机(SVM)的最佳参数,并建立了基于PSO-SVM的软测量模型。利用赖氨酸发酵的数据对模型进行仿真验证,结果表明该模型具有很好的学习精度和泛化能力。另外在建模耗时上,PSO-SVM算法所用时间远少于标准SVM算法所用时间。