基于机器学习的小型核反应堆系统状态预测方法

来源 :核动力工程 | 被引量 : 0次 | 上传用户:misscxj890417L
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为支持小型可移动高温熔盐堆(TFHR)自动控制系统的开发,提出了一种基于机器学习的反应堆状态预测模型,以根据仪控系统的监测数据评估反应堆当前状态并预测其未来发展。该模型由一个反应堆物理子模型和热工子模型构成,由TFHR一回路的RELAP模型生成训练数据,通过支持向量回归(SVR)训练得到,并采用粒子滤波(PF)方法估计其中的未知模型参数。通过TFHR反应性引入事故的测试算例表明,本文提出的预测模型在预测反应堆状态、估计模型参数(如反应性引入率)等方面具有良好的性能。
其他文献
为了合理分配核电厂的设备管理、维修资源,提高在运系统设备的可靠性,确保核电厂安全稳定经济运行,必须对核电厂的设备进行分级管理.本文基于AP913设备可靠性管理体系,对设备