基于社交圈发现与用户信任度传播的微博朋友推荐方法

来源 :软件导刊 | 被引量 : 0次 | 上传用户:wqvbqjxtid1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微博的普及导致微博平台数据量日益增长,因此从海量微博中快速准确地为微博用户推荐好友成为了巨大挑战。用户的社交网络和微博文本在一定程度上体现了用户的价值观和兴趣爱好,有相似兴趣的微博用户更有可能成为朋友。基于上述事实,以用户微博文本相似度为似然函数,使用K-means聚类对微博用户聚类,得到微博用户社交圈;在社交圈内部迭代计算用户之间的相似度,同时计算用户对其所在社交圈中其余用户的信任度;最后,根据用户之间的相似度和信任度完成微博好友推荐。实验结果表明,该算法优于传统的基于社交网络拓扑图的好友推荐方法。
其他文献
视网膜血管分割算法是自动视网膜疾病筛查系统主要部分。视网膜血管检测在医学诊断上应用日益广泛,对糖尿病、青光眼等病状有较精确的诊断。提出一种新的全卷积神经网络视网
形式化方法在软件开发过程中一直扮演着重要角色。由于其建立在严格的数学基础之上,因此开发成本较高。为了解决开发成本问题,将软件开发整体分为形式化开发集合类和非形式化