改进GA优化BP神经网络的短时交通流预测

来源 :合肥工业大学学报(自然科学版) | 被引量 : 0次 | 上传用户:fht5403
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高BP神经网络预测模型对短时交通流的预测准确性,文章提出了一种基于改进遗传算法优化BP神经网络的短时交通流预测方法。由于模拟退火算法具有较强的局部搜索能力,能够在搜索过程中避免陷入局部最优解,因此引入模拟退火算法中的Metropolis接受准则来增加遗传算法的局部搜索能力,避免了遗传算法过早收敛和陷入局部最优解。通过改进的遗传算法优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解。仿真结果表明,该方法对短时交通流预测具有较好的预测精确性。
其他文献
针对目前的重编程算法大多关注减少传输数据量而极少考虑节点剩余能量,采用固定传输功率造成的能量浪费,文章提出基于动态传输功率的重编程能量均衡算法,该算法可根据能量利
由于工程中的复杂系统常常具有非线性的特点,因此寻找满足系统要求的最低成本成了复杂系统设计的难点。针对这一问题,文章对常规的人工鱼群算法(artificial fish school algor