论文部分内容阅读
为了提高BP神经网络预测模型对短时交通流的预测准确性,文章提出了一种基于改进遗传算法优化BP神经网络的短时交通流预测方法。由于模拟退火算法具有较强的局部搜索能力,能够在搜索过程中避免陷入局部最优解,因此引入模拟退火算法中的Metropolis接受准则来增加遗传算法的局部搜索能力,避免了遗传算法过早收敛和陷入局部最优解。通过改进的遗传算法优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解。仿真结果表明,该方法对短时交通流预测具有较好的预测精确性。