基于量子神经网络拟合法的矿区地表变形监测

来源 :金属矿山 | 被引量 : 0次 | 上传用户:woshizhaozhiqiang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
矿区地表变形监测受到矿区地质构造条件、开采规模、采矿工艺等因素的影响,目前常规的矿区地表变形监测方法具有流程繁琐、工作量大、监测精度低等不足,为此,提出了一种基于量子神经网络拟合法的矿区地表变形监测方法。该方法通过将矿区监测点x、y坐标作为神经网络输入层神经元,将监测点的高程异常量(ξ)作为神经网络的输出层神经元,经多次迭代获得最优解。基于某矿区GPS监测数据,分别采用二次多项式拟合、BP神经网络拟合以及所提方法进行对比试验,并引入内、外符合精度作为各方法拟合精度的评价标准,结果表明:对于不同分布的监测点以及不同数量的监测点,所提方法相对于其余2种方法而言具有较高的内、外符合精度及较小的残差,对于提高矿区变形监测精度有一定的参考价值。
其他文献
据报道,从2012年2月15日起,上海市开展超标电动自行车集中整治,禁止销售时速高于20km、重量超过40kg的“超标车”。为期3个月的专项整治,将告一段落。记者在多家门店探访时发