论文部分内容阅读
为了更好地满足工程上对SOFC(solid oxide fuel cell)性能预测和控制方案设计要求,提出利用人工蜂群算法(ABC)优化支持向量机(SVM)来建立SOFC电堆模型。通过利用ABC算法优化SVM参数(核函数值宽度和惩罚因子),采用优化后的参数作为SVM的初始参数建立模型,与SVM、GA-SVM和PSO-SVM模型进行对比。实验结果表明:ABC-SVM模型平均平方误差小,说明该算法可以很好的预测在不同氢气流速下SOFC的电压/电流特性曲线。该模型对SOFC预测和控制方案设计有一定价值。