论文部分内容阅读
对基于密度的分布式聚类算法DBDC进行改进,提出了一种基于密度的分布式隐私保护聚类算法DBPPDC。在由局部模型确定全局模型时,通过相关安全协议有效地保护了局部模型,同时不影响全局聚类。在利用全局模型更新局部模型时,通过改进算法、应用安全协议保护隐私信息,最终使各站点分布的数据能够安全聚类。理论分析和实验结果表明,DBPPDC算法是有效的。