论文部分内容阅读
在基于GMM的说话人确认系统中,模型的训练是为每个说话人的语音建立模型,然后通过一定的算法找到一组参数λ,使似然概率最大。文中通过对GMM的研究提出一种改进的模糊C均值算法(FCM)并将改进后的算法应用到模型初始化中。同时,GMM在话者确认时,语音数据不足会导致识别率下降,本文采用能覆盖话者语音的高斯混合模型.通用背景模型(GMM-UBM)作为识别模型,通过算法比较及实验分析可知,改进算法后的系统在识别率上明显优于传统的基于GMM的说话人识别系统。