论文部分内容阅读
基于运动想象的脑机接口是把使用者的运动意图转变成控制外部设备的信号,它包括脑电数据采集,特征提取和模式分类等几个基本环节。本研究发展了用支持向量机后验概率输出进行分类,并用分类结果中具有大概率的测试样本扩充训练集的模式分类与特征更新方法,并把此方法应用于4类任务运动想象脑机接口实验。使用BCICompetitionⅢ的数据Ⅲa,运用一对一共空间模式扩展方法进行特征提取,用支持向量机后验概率方法进行分类和训练样本扩充。结果表明:概率信息能提高BCI的性能;应用概率信息选取样本扩充训练集能增加分类器的稳健性。