,Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder

来源 :信息与电子工程前沿(英文版) | 被引量 : 0次 | 上传用户:sunning1002
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The nodes number of the hidden layer in a deep leaing network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University of Califoia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.
其他文献
优质春小麦品系重要品质及产量性状的遗传参数与相关性研究 选用七个春小麦新品系,对14个重要品质与产量性状的遗传变异系数、广义遗传力、遗传相关系数、广义相关遗传力等遗传参数进行了估算和分析,并探讨了春小麦经济性状的综合选择方法。结果表明: (1)SDS-沉淀值广义遗传力高(75.81%),直接选择有效,但其遗传变异系数较小(5.22%)且平均表现一般(3.5918ml),就本群体沉...
学位
学位