论文部分内容阅读
山体滑坡(Landslide)是一种危害性极大的地质灾害,有效的获取滑坡前期征兆信息能够对山体滑坡进行预警预报。但是,根据我国环境监测网站数据显示,近年来成功监测预报山体滑坡的案例只有3.76%。究其原因在于山体滑坡作用机理复杂,已有的监测方法并没有实现滑坡前期征兆信息与滑坡体所处状态的有效关联,也就不能对滑坡过程的各种状态做出准确的预警预报。因此,研究监测滑坡前期征兆信息的科学方法,以及建立滑坡前期征兆信息与滑坡所处状态有效关联的监测模型,对于滑坡的预警预报具有重要的实际意义和社会价值。本文旨在运用光纤传感技术研制复合光纤装置达到对滑坡进行监测和预警。光纤传感技术(Optical Fiber Sensing Technology,OFST)监测滑坡相较于传统技术优势明显。最主要的优点在于:价格低廉的光纤可实现分布式铺设于滑坡体的表面或内部,可灵敏地监测滑坡前期征兆信息位移和应力等。但如何设计既经济又具有普适性的监测装置用于监测滑坡前期征兆信息,以及如何建立科学模型使得监测数据与滑坡的孕育过程有效关联等问题亟待解决。通过调研发现,目前的光纤监测方法仅仅单一地监测滑坡体的位移变化信息,又或者仅仅单一地监测滑坡体内部的应力变化信息。由于滑坡过程中位移、应力变化呈现复杂多样性且交叉影响,仅靠这些单一的监测方法无法使得监测数据与滑坡状态有效关联。本文针对土质边坡这一特定领域,提出了两大类复合光纤装置(Composite Optical Fiber Transducer,COFT)以及位移与滑坡推力相结合的预警判别方法。复合光纤装置包括:一是运用光时域反射原理将光纤绕制成蝴蝶结形式制作蝴蝶结复合光纤装置(Bowknot-COFT)以监测滑坡的蠕滑位移信息;二是运用光纤布拉格光栅(Fiber Bragg Grating,FBG)构成光栅复合光纤装置(FBG-COFT)以监测滑坡的剪切位移和推力信息,其中FBG-COFT又分别设计制作了三种传感装置。围绕两大类复合光纤装置共计四种传感装置以及位移-推力预警判别法(Displacement-Thrust,D-T)构建复合光纤装置联合监测技术(Joint Monitoring Technology of COFT,JMT-COFT),并用于室内模型试验和室外试验以监测滑坡的位移、推力信息,试验表明运用复合光纤装置联合监测技术可以较好的监测滑坡前期征兆信息并且能够实现对滑坡预警。本文主要取得的成果有以下几方面:(1)在团队协作下,参与发明制作光纤蝴蝶式复合光纤装置(Bowknot-COFT)的基础上,又自主开展以PVC方管为基材的光纤蝴蝶式复合光纤装置优化研究。该项研究增大了蝴蝶结复合光纤装置的测量范围。经过试验验证,该装置对于滑坡体的浅表部位移监测极为有效。(2)自主设计基于光纤布拉格光栅的复合光纤装置,用于测量滑坡体的剪切推力、深部位移。基于光纤光栅的复合光纤装置又分为力值传感装置(Force Sensing Transducer,FST)、剪切位移传感装置(Shear Displacement Measuring Transducer,SDMT)和基于光纤布拉格光栅的应变测斜管(FBG-inclinometer)。探索了光纤传感技术的主要构件光纤激光器的优化研究,首次开展5MN的大力值光栅传感器研究,研发滑坡体深部剪切位移传感装置,改进光栅应变管计算方式。利用蝴蝶结复合光纤装置、光栅测斜管和剪切位移传感装置三者优势互补测量滑坡体立体分部的位移变化。(3)探索基于光时域反射技术(Optical Time-Domain Reflection,OTDR)和光纤布拉格光栅(Fiber Bragg Grating,FBG)的复合光纤装置立体监测方式,分析土质边坡位移信息和力学信息,提出位移-推力预警判别法(Displacement-Thrust,D-T),构建复合光纤装置联合监测体系,为揭示土质边坡产生滑坡的内在力学运动规律和外在滑坡孕育阶段变化规律奠定基础。(4)开展了基于复合光纤装置联合监测技术的室内模型试验和野外原位试验。根据土质边坡深部位移、浅表部位移、剪切推力变化规律,分析滑坡所处三个阶段的特征,探索以位移-推力判别法为依据预警预报土质边坡的临滑分界点。通过研究,复合光纤装置联合监测技术能最优化发挥各个装置的优势。其主要的特点为针对滑坡体表面、中部、深部位移变化分别研发了与之相匹配的三种复合光纤装置进行监测,并且针对滑坡体推力变化特点开发了光栅推力传感器。复合光纤装置联合监测技术对滑坡孕育过程的三个阶段:蠕变滑动(Creep sliding)——匀速滑动(Uniform sliding)——加速滑动(Speed sliding),提出了明确的判断和划分依据。复合光纤装置联合监测技术实现了对土体滑坡的的前期征兆信息有效监测,研究了前期征兆信息与滑坡体所处状态的内在联系机理,达到了对滑坡体进行预警的目的。对于后续研究工作,还需继续探讨如何进一步增加传感装置的测量范围以及如何实现多种装置集成一体化等问题。