论文部分内容阅读
本文利用在反应过程中同时添加均相沉淀剂六次甲基四胺和形貌导向剂十六烷基三甲基溴化铵,结合水热反应的方法一步合成了镍钴氢氧化物.随着六次甲基四胺的水解,层状镍钴氢氧化物可以被合成而且避免了额外碱源的使用.同时,由于反应过程中十六烷基三甲基溴化铵参与的孔径调节,合成出来的镍钴氢氧化物具有可控的介孔尺寸13.4 nm以及较大的比表面积93.6 m2·g-1.X射线衍射图谱表明合成出来的镍钴氢氧化物构型是α-Ni(OH)2-β-Co(OH)2.扫描电镜表明合成出来的镍钴氢氧化物具有层状的结构.正是因为层状介孔结构的存在,合成出来的镍钴氢氧化物在1 A·g-1电流密度下,比电容可以高达1902 F·g-1.即使电流密度提高到8 A·g-1,镍钴氢氧化物的比电容仍然可以保持在1250 F·g-1.
In this paper, the simultaneous addition of a homogeneous precipitating agent hexamethylenetetramine and morphology-guided cetyltrimethylammonium bromide in the reaction process, combined with hydrothermal reaction step nickel-cobalt hydroxide synthesis step. With the hydrolysis of hexamethylenetetramine, the layered nickel-cobalt hydroxide can be synthesized and the use of additional alkali sources can be avoided.At the same time, due to the pore size regulation of cetyltrimethylammonium bromide during the reaction, The synthesized nickel-cobalt hydroxide has a controlled mesopore size of 13.4 nm and a large specific surface area of 93.6 m 2 · g -1. The X-ray diffraction pattern shows that the synthesized nickel-cobalt hydroxide has the configuration of α-Ni ( OH) 2-β-Co (OH) 2. Scanning electron microscopy showed that the synthesized nickel-cobalt hydroxide has a layered structure. It is because of the presence of layered mesoporous structure that the synthesized nickel- A · g-1 current density, the specific capacitance can be as high as 1902 F · g-1. Even if the current density increased to 8 A · g-1, the specific capacitance of nickel-cobalt hydroxide can still be maintained at 1250 F · g-1 .