论文部分内容阅读
发现离群点并合理地解释离群点对数据挖掘结果的运用有重要意义,通过对离群点属性的检测可以发现其离群特性,进而更加准确地解释聚类结果。针对在聚类结果中出现的不同离群点及其特性,提出将层次聚类算法应用于离群点分析,通过元胞自动机距离变换算法实现凝固层次聚类,实现了簇间距离的度量;定义了演化周期上的平均度量距离,能够发现不同聚类层次上的离群点及其离群特性。该算法能够在得到聚类结果的同时,有效地解释离群点的属性,并具有较低的计算复杂度和并行计算以及向高维空间扩展的特性。通过试验数据进行了实证研究,验证了算法的有效性