论文部分内容阅读
本文将Grassmann流形上的Schubert子簇所满足的经典的Schubert条件推广到一般的复半单李群G的广义旗流形.利用复半单李群的表示理论,我们首先在李群的权空问上引入自然的Ehresman偏序.这一偏序可以导出李群的最高权表示的权系、Weyl群及其陪集空间上的Ehresman偏序.然后我们对一般的复表示定义了相应的射影空间,Grassmann流形和旗流形.这使得能够像经典的情形一样来分析广义旗流形的Schubert子簇满足的Schubert条件.在讨论中,我们还给出了李群G的Weyl群及其陪集