论文部分内容阅读
构建了一种基于发音特征的音/视频双流动态贝叶斯网络(dynamic Bayesian network,DBN)语音识别模型,定义了各节点的条件概率关系,以及发音特征之间的异步约束关系,最后在音/视频连接数字语音数据库上进行了语音识别实验,并与音频单流、视频单流DBN模型比较了在不同信噪比情况下的识别效果。结果表明,在低信噪比情况下,基于发音特征的音/视频双流语音识别模型表现出最好的识别性能,而且随着噪声的增加,其识别率下降的趋势比较平缓,表明该模型对噪声具有很强的鲁棒性,更适用于低信噪比环境下的语音识别。