论文部分内容阅读
对于伴随于一个扩张矩阵A的各向异性Hardy空间H^p(R^n),利用此空间的原子分解和分子分解,本文讨论了伴随于A的θ(t)型奇异积分算子在各向异性Hardy空间H^1(R^n)到L^1(R^n)空间的有界性,以及在各向异性Hardy空间H^p(R^n)自身上的有界性。这些结果拓展了θ(t)型奇异积分算子在Hardy空间有界性的结论。