一种新的恒星大气物理参数自动估计方案SVR(Haar)

来源 :光谱学与光谱分析 | 被引量 : 0次 | 上传用户:kingstarKS
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出了一种新的恒星大气物理参数自动估计的新方案,并称之为SVR(Haar)。由于观测光谱受到大量宇宙辐射、大气和观测设备等引起的噪声干扰,且这种噪声干扰往往是其中的频率较高成分。所以该方案的基本思想是首先使用Haar小波剔除高频噪声成份,以提高恒星大气物理参数估计的准确性;然后使用支持向量机回归方法(SVR)对恒星参数做出估计,该方法能通过ε不敏感域进一步提高对光谱微小畸变和干扰的容许能力,增强解决方案的鲁棒性。为了验证SVR(Haar)方案的有效性,针对相关研究中的权威模拟恒星光谱和SLOAN发布
其他文献
将二维相关近红外谱参数化方法与BP神经网络结合,建立掺杂牛奶与纯牛奶的判别模型。分别配制含有尿素牛奶(1~20g·L^-1)和三聚氰胺牛奶(O.01~3g·L^-1)样品各40个。研究了纯牛奶
近年来光谱技术以其经济、高效的优势在土壤盐渍化监测研究中得到重视,但是由于土壤水分对反射光谱影响很大,土壤湿润条件下监测精度难以满足农业生产需求。通过对盐土土柱室内