论文部分内容阅读
主要讨论了线性过程Xt=∑∞j=0ajεt-j,其中{εt,Ft;t∈Ζ}是均值为零,方差有限的平稳鞅差序列,aj,j∈Ζ是绝对可和的实数序列.令Sn=∑nt=1Xt,n≥1,在适当矩的条件下,利用部分和Sn的收敛性,对于1≤p2,若supj≥1Eεjδ<∞,证明了∑∞n=1nr/p-2P|Sn|≥εn1p,∑∞n=1n-1/P|Sn|≥εn1/p当ε→0时的精确渐进性.在鞅差序列的前提下,进一步推广了线性过程的Baum-Katz大数律的精确渐近性性质.