Numerical simulations and comparative analysis of two-and three-dimensional circulating fluidized be

来源 :中国化学工程学报(英文版) | 被引量 : 0次 | 上传用户:loveag
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Carbon dioxide (CO2), the main gas emitted from fossil burning, is the primary contributor to global warming. Circulating fluidized bed reactor (CFBR) is proved as an energy-efficient method for post-combustion CO2 cap-ture. The numerical simulation by computational fluid dynamics (CFD) is believed as a promising tool to study CO2 adsorption process in CFBR. Although three-dimensional (3D) simulations were proved to have better predicting performance with the experimental results, two-dimensional (2D) simulations have been widely re-ported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational effi-ciency recently. However, the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study. Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions, it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions. In this work, the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the ef-fects of dimensionality on the hydrodynamics and reaction behaviors, in which the separation rate, species dis-tribution and hydrodynamic characteristics were comparatively studied for both model frames. With both accuracy and computational costs considered, the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions, which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR.
其他文献
Deactivation of polyphenol oxidase (PPO) in natural products is essential for downstream processing of func-tional molecules used as food or food additives, par
The phase behavior of potassium sulfate (K2SO4) in polyethylene glycol with molecular weight 8000 (PEG8000) and water (H2O) mixed solvent at 288.15, 298.15, and