论文部分内容阅读
近年来,聚类分析在雷达信号分选领域中得到了大量的关注。大部分算法聚类数需要事先人为设定,为了解决这一问题,将基于层次划分的聚类算法应用到雷达信号分选当中。该算法通过数据各个维度的差与对应阈值的比较进行分类,并提出一种基于“点对”的平均距离的评价指标来确定最佳聚类,无需人为设定聚类数,可实现自动聚类。仿真实验表明,此算法对参数固定和参数变化的雷达都具有良好的分选能力,分选准确率较高。