高阶无迹卡尔曼滤波算法在飞机定位中的应用

来源 :计算机应用与软件 | 被引量 : 0次 | 上传用户:killeverrui
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
无迹卡尔曼滤波算法(UKF)在飞机定位和跟踪的过程中精度不够,原因在于误差变量的偏度和峰态在坐标转换过程中对其分布影响很大。为了解决这一问题,将高阶无迹卡尔曼滤波算法应用到QAR数据中。首先,根据高阶UT变换,选取一组样本点(sigma点)表征k时刻最优估计值前四阶矩的分布特征,通过传递得到k+1时刻一步预测值的先验概率分布。然后以观测数据作为量测值,带入滤波算法得到k+1时刻飞机状态的最优估计值。最后根据计算机产生的模拟噪声数据和真实的QAR数据实现飞机定位的仿真验证。从仿真结果看,高阶无迹卡尔曼滤波算
其他文献
针对传统分水岭变换算法在图像分割过程中容易产生过分割问题,提出基于快速mean-shift聚类和标记分水岭变换的图像分割算法。首先利用快速mean-shift聚类算法对原始图像进行预处理,确定分割区域和聚类数目;利用sobel算子进行梯度处理;对处理后的图像做形态学运算,并给每个集水盆分配不同的标记,按升序访问每个像素点,依次浸没到集水盆中,完成图像分割。实验结果表明,该方法可以有效分割医学影像,
目的评估促血管生成microRNA(miR)水平与乳腺癌化疗心脏毒性发生风险的关联。方法纳入新辅助化疗的乳腺癌患者195例,于化疗前采集患者的血浆并采用qPCR检测14个促血管生成miR