论文部分内容阅读
系统研究了类内变化和类数目增加所引起的人脸识别中的非线性识别问题,并比较了线性识别方法和非线性识别方法在不同用户集规模下的适用性.采用CAS-PEAL大型人脸数据库中的表情集(330人)和姿势集(1000人)进行了3组实验.实验结果表明:当训练集的人数在300人(表情集)以内时,增加类内的变化不会对线性识别方法造成影响,并可以提高识别的准确率;但是,当保持类内图片数不变而增加类的数目时,类数(人数)增加对线性方法和非线性方法产生了不同的影响.随着人数增加,线性识别方法的识别准确率逐渐降低,而基于核方法的非