论文部分内容阅读
大部分现有的最优实验设计方法是基于线性回归或拉普拉斯正则最小二乘模型(LapRLS)的。提出一种基于二阶Hessian能并具有流形学习能力的主动学习算法,该算法选择那些能使Hessian正则回归模型的参数协方差矩阵最小化的样本作为最优样本,可以克服LapRLS的依赖特定常量及缺乏推算能力等缺点。基于内容的图像检索实验证明了该方法的有效性。