论文部分内容阅读
为了实现对图像中多种类目标的检测,缩短目标搜索时间,本文基于图像目标的3个显著性线索(显著性检测,颜色对比,超像素跨越),构建了一种改进的通用无监督目标检测模型。通过机器学习center-surrounding比例参数,计算各个线索的显著度得分,并在朴素贝叶斯框架下对这3个目标显著性线索进行融合,以最终确定窗口中包含图像目标的概率。实验参数在PASCAL VOC 2007图像库进行检测,检测率为28.94%,击中率达96.99%;在MSRC图片库进行检测,检测率为80.64%,击中率达99.10%;