论文部分内容阅读
故障样本缺乏是制约智能故障诊断发展的重要原因,支持向量机是近年来提出的一种基于小样本的统计学习方法。将支持向量机分类算法应用到提升机制动系统的多类故障分类,并与BP神经网络进行对比研究,实验表明,支持向量机算法比BP神经网络具有更好的分类性能,且“一对多”支持向量机的分类效果是最好的,更适合于提升机制动系统的故障诊断。