论文部分内容阅读
为了提高食用油掺伪检测效果,基于食用油的高效液相色谱数据,提出了一个新的多标号学习矢量量化算法(ML-LVQ),并应用于食用油的掺伪检测中。它每次调整两个原型使排序损失的上界最小,并通过元标号分类器确定多标号的数目,从而达到同时优化ranking准则函数和bipartitions准则函数的目的。在9类纯油以及它们的混合油样本的数据集上测试的结果表明,ML-LVQ取得了比改进的AdaBoost.RMH算法更好的性能。