论文部分内容阅读
风电场功率预测对电力系统稳定运行起着决定性作用。首先对传统BP神经网络进行改进,以某一风电场获取的2月1日-10日的天气预报(NWP)数据和功率数据作为改进后BP神经网络的训练数据,对神经网络进行训练;其次以2月11号3小时的数值天气预报数据作为改进后BP神经网络的输入数据,对未来3小时的输出功率进行预测。预测过程和结果显示,改进后的BP神经网络在满足低预测误差的同时,能够提高BP神经网络的稳定性和收敛速度。